9 research outputs found

    A prototype of an energy-efficient MAGLEV train : a step towards cleaner train transport

    Get PDF
    The magnetic levitation (MAGLEV) train uses magnetic field to suspend, guide, and propel vehicle onto the track. The MAGLEV train provides a sustainable and cleaner solution for train transportation by significantly reducing the energy usage and greenhouse gas emissions as compared to traditional train transportation systems. In this paper, we propose an advanced control mechanism using an Arduino microcontroller that selectively energizes the electromagnets in a MAGLEV train system to provide dynamic stability and energy efficiency. We also design the prototype of an energy-efficient MAGLEV train that leverages our proposed control mechanism. In our MAGLEV train prototype, the levitation is achieved by creating a repulsive magnetic field between the train and the track using magnets mounted on the top-side of the track and bottom-side of the vehicle. The propulsion is performed by creating a repulsive magnetic field between the permanent magnets attached on the sides of the vehicle and electromagnets mounted at the center of the track using electrodynamic suspension (EDS). The electromagnets are energized via a control mechanism that is applied through an Arduino microcontroller. The Arduino microcontroller is programmed in such a way to propel and guide the vehicle onto the track by appropriate switching of the electromagnets. We use an infrared-based remote-control device for controlling the power, speed, and direction of the vehicle in both the forward and the backward direction. The proposed MAGLEV train control mechanism is novel, and according to the best of our knowledge is the first study of its kind that uses an Arduino-based microcontroller system for control mechanism. Experimental results illustrate that the designed prototype consumes only 144 W-hour (Wh) of energy as compared to a conventionally designed MAGLEV train prototype that consumes 1200 Wh. Results reveal that our proposed control mechanism and prototype model can reduce the total power consumption by 8.3 x as compared to the traditional MAGLEV train prototype, and can be applied to practical MAGLEV trains with necessary modifications. Thus, our proposed prototype and control mechanism serves as a first step towards cleaner engineering of train transportation systems

    An Efficient and Secure Energy Trading Approach with Machine Learning Technique and Consortium Blockchain

    Get PDF
    In this paper, a secure energy trading mechanism based on blockchain technology is proposed. The proposed model deals with energy trading problems such as insecure energy trading and inefficient charging mechanisms for electric vehicles (EVs) in a vehicular energy network (VEN). EVs face two major problems: finding an optimal charging station and calculating the exact amount of energy required to reach the selected charging station. Moreover, in traditional trading approaches, centralized parties are involved in energy trading, which leads to various issues such as increased computational cost, increased computational delay, data tempering and a single point of failure. Furthermore, EVs face various energy challenges, such as imbalanced load supply and fluctuations in voltage level. Therefore, a demand-response (DR) pricing strategy enables EV users to flatten load curves and efficiently adjust electricity usage. In this work, communication between EVs and aggregators is efficiently performed through blockchain. Moreover, a branching concept is involved in the proposed system, which divides EV data into two different branches: a Fraud Chain (F-chain) and an Integrity Chain (I-chain). The proposed branching mechanism helps solve the storage problem and reduces computational time. Moreover, an attacker model is designed to check the robustness of the proposed system against double-spending and replay attacks. Security analysis of the proposed smart contract is also given in this paper. Simulation results show that the proposed work efficiently reduces the charging cost and time in a VEN.publishedVersio

    Secure energy trading for electric vehicles using consortium blockchain and k-nearest neighbor

    No full text
    In this paper, we deal with some major energy issues related to the charging of vehicles in vehicular network. The exponential increase of Electric Vehicles (EVs) has led to the more complex problems. In general, there are two major issues related to th EVs. First, its difficult to find a nearest charging station with required energy. Second, how much energy is needed to reach charging station from current location. In traditional systems, the energy trading between charging station and EVs is not secured due to centralized girds. To deal with this problem, a consortium blockchain based secure energy trading system is proposed. Blockchain is used for secure energy trading with moderate cost. The main purpose of the proposed system is resource reduction and find out the present state of charging stations. Simulations and results show that the proposed schemes outperform the conventional schemes in terms of minimizing the charging cost of battery and expenses of EVs. © 2020 IEEE

    Smart energy management system for minimizing electricity cost and peak to average ratio in residential areas with hybrid genetic flower pollination algorithm

    No full text
    Demand Side Management (DSM) plays a significant role in the smart grid to minimize Electricity Cost (EC). Home Energy Management Systems (HEMSs) have recently been studied and proposed explicitly for HEM. In this paper, we propose a novel nature-inspired hybrid Genetic Flower Pollination Algorithm (GFPA) to minimize cost with an affordable delay in appliance scheduling. Our proposed GFPA algorithm combines elements of the Genetic Algorithm (GA) and Flower Pollination Algorithm (FPA) to create a hybrid approach. To assess the effectiveness of the proposed algorithm, we consider a scalable town consisting of 1, 10, 30, and 50 homes, respectively. The proposed solution finds an optimal scheduling pattern that simultaneously minimizes EC and Peak to Average Ratio (PAR) while maximizing User Comfort (UC). We assume that all homes are homogeneous in terms of appliances and power consumption patterns. Simulation results show that our proposed scheme GFPA performs better when applying Critical Peak Pricing (CPP) signal using different Operational Time Intervals (OTIs) and compared with unscheduled, GA, and FPA-based solutions in terms of reducing cost since they achieve on average 98%, 36%, 23%, and 22%, respectively. Similarly, PAR averages 98%, 36%, 59%, and 55%, respectively. While, UC comparing to GA and FPA, are around 88%, 48%, and 63%, respectively. Our proposed scheme achieves better results by applying Real Time Pricing (RTP) signals and different OTIs. As these schemes, i.e., unscheduled, GA, FPA, and GFPA, achieve cost on average 92%, 50%, 29%, and 28%, respectively. While PAR on average 94%, 39%, 62%, and 56%, and UC for GA, FPA, and GFPA on average 98%, 52%, and 49%, respectively. Overall, our proposed GFPA algorithm offers a more effective solution for minimizing EC with an affordable delay in appliance scheduling while considering PAR and UC

    A Machine Learning and Blockchain Based Efficient Fraud Detection Mechanism

    No full text
    In this paper, we address the problems of fraud and anomalies in the Bitcoin network. These are common problems in e-banking and online transactions. However, as the financial sector evolves, so do the methods for fraud and anomalies. Moreover, blockchain technology is being introduced as the most secure method integrated into finance. However, along with these advanced technologies, many frauds are also increasing every year. Therefore, we propose a secure fraud detection model based on machine learning and blockchain. There are two machine learning algorithms—XGboost and random forest (RF)—used for transaction classification. The machine learning techniques train the dataset based on the fraudulent and integrated transaction patterns and predict the new incoming transactions. The blockchain technology is integrated with machine learning algorithms to detect fraudulent transactions in the Bitcoin network. In the proposed model, XGboost and random forest (RF) algorithms are used to classify transactions and predict transaction patterns. We also calculate the precision and AUC of the models to measure the accuracy. A security analysis of the proposed smart contract is also performed to show the robustness of our system. In addition, an attacker model is also proposed to protect the proposed system from attacks and vulnerabilities

    An Efficient and Secure Energy Trading Approach with Machine Learning Technique and Consortium Blockchain

    Get PDF
    In this paper, a secure energy trading mechanism based on blockchain technology is proposed. The proposed model deals with energy trading problems such as insecure energy trading and inefficient charging mechanisms for electric vehicles (EVs) in a vehicular energy network (VEN). EVs face two major problems: finding an optimal charging station and calculating the exact amount of energy required to reach the selected charging station. Moreover, in traditional trading approaches, centralized parties are involved in energy trading, which leads to various issues such as increased computational cost, increased computational delay, data tempering and a single point of failure. Furthermore, EVs face various energy challenges, such as imbalanced load supply and fluctuations in voltage level. Therefore, a demand-response (DR) pricing strategy enables EV users to flatten load curves and efficiently adjust electricity usage. In this work, communication between EVs and aggregators is efficiently performed through blockchain. Moreover, a branching concept is involved in the proposed system, which divides EV data into two different branches: a Fraud Chain (F-chain) and an Integrity Chain (I-chain). The proposed branching mechanism helps solve the storage problem and reduces computational time. Moreover, an attacker model is designed to check the robustness of the proposed system against double-spending and replay attacks. Security analysis of the proposed smart contract is also given in this paper. Simulation results show that the proposed work efficiently reduces the charging cost and time in a VEN

    DataSheet_1_A survey of Fusarium species and ADON genotype on Canadian wheat grain.pdf

    No full text
    IntroductionWheat is a staple food that is important to global food security, but in epidemic years, fungal pathogens can threaten production, quality, and safety of wheat grain. Globally, one of the most important fungal diseases of wheat is Fusarium head blight (FHB). This disease can be caused by several different Fusarium species with known differences in aggressiveness and mycotoxin-production potential, with the trichothecene toxin deoxynivalenol (DON) and its derivatives being of particular concern. In North America, the most predominant species causing FHB is F. graminearum, which has two distinct sub-populations that are commonly classified into two main chemotypes/genotypes based on their propensity to form trichothecene derivatives, namely 15-acetyldeoxynivalenol (15-ADON) and 3-acetyldeoxynivalenol (3-ADON).Materials and methodsWe used a panel of 13 DNA markers to perform species and ADON genotype identification for 55, 444 wheat kernels from 7, 783 samples originating from across Canada from 2014 to 2020.Results and discussionBased on single-seed analyses, we demonstrate the relationships between Fusarium species and trichothecene chemotype with sample year, sample location, wheat species (hexaploid and durum wheat), severity of Fusarium damaged kernels (FDK), and accumulation of DON. Results indicate that various Fusarium species are present across wheat growing regions in Canada; however, F. graminearum is the most common species and 3-ADON the most common genotype. We observed an increase in the occurrence of the 3-ADON genotype, particularly in the western Prairie regions. Our data provides important information on special-temporal trends in Fusarium species and chemotypes that can aid with the implementation of integrated disease management strategies to control the detrimental effects of this devastating disease.</p
    corecore